Unconstrained recursive importance sampling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconstrained Recursive Importance Sampling

We propose an unconstrained stochastic approximation method of finding the optimal measure change (in an a priori parametric family) for Monte Carlo simulations. We consider different parametric families based on the Girsanov theorem and the Esscher transform (or exponentialtilting). In a multidimensional Gaussian framework, Arouna uses a projected Robbins-Monro procedure to select the paramete...

متن کامل

Quantization based recursive importance sampling

We investigate in this paper an alternative method to simulation based recursive importance sampling procedure to estimate the optimal change of measure for Monte Carlo simulations. We propose an algorithm which combines (vector and functional) optimal quantization with Newton-Raphson zero search procedure. Our approach can be seen as a robust and automatic deterministic counterpart of recursiv...

متن کامل

Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling

Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of estimating both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro (RM) procedure based on Rockafellar-Uryasev’s identity for the CVaR. Convergence rate of this algorithm t...

متن کامل

Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasev’s identity for the CVaR. The convergence rate of this algorithm to ...

متن کامل

Computation of VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasev’s identity for the CVaR. The convergence rate of this algorithm to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2010

ISSN: 1050-5164

DOI: 10.1214/09-aap650